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Abstract 

It is pointed out that Hepp's derivation of the LSZ asymptotic condition is not quit~ 
correct. Rigorous proof is given for an even wider class of asymptotic states by direct 
use of Haag's method. This is possible because of two lemmas, proved in the appendix, 
one generalising RueUe's estimate on smooth Klein-Gordon wave functions and the other 
stating that every tempered test function can be represented as a product of two other 
tempered test functions. 

1. Introduction 

K. Hepp is generally believed to have given a rigorous derivation of the LSZ 
asymptotic condition within the framework of the (restricted) Haag-Ruelle 
scattering theory (Hepp, 1965) (see also Hepp, 1966). Actually, there is an 
error in his proof of rapid strong convergence (in time) of Haag's almost local- 
ised states for non-overlapping tempered test functions (see Hepp (1965), 
proof of Theorem 2.1). 

His argument is based on the assumption that for every × E~O(R3(k-1)), 
k~> 3, with 

m 2 + pj ~. pj + (m 2 + p~)-l /2p2 @ 0 in supp X 
/=2  1=2 
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there exists a suitable (¢~ -partition {at } (1 ~< l ~ 3) of the unity for which 

[ m 2 + ( ] ~ 2 P / ) 2 ] - l / 2  ~]=2p}+(m2+p22)_t/2p~q=0 insuppxa l  

However, as may be easily seen (Appendix 3), those partitions do not exist in 
general. Thus Hepp's proof is only justifiable if his definition of non-overlapping 
test functions is sharpened to mean non-zero minimal distance of supports in 
momentum space~-then, indeed, existence of the required partition of unity 
is generally guaranteed. 

Of course, a restriction of this kind does not seem to be crucial from a 
physical point of view. On the contrary, according to physical intuition it 
should be possible, without affecting the results, to enlarge Hepp's class of non- 
overlapping test functions to the class of 'essentially non-overlapping' test 
functions: 

Definition. A set { f]} C ~Sa(R 3) is called essentially non-overlapping if 
supp ]} (3 supp j~ has no interior points for f 4:/. 

Now, the purpose of the present paper is to give rigorous proof of the LSZ 
asymptotic condition in Hepp's form for essentially non-overlapping asymp- 
totic states. We will not try to cure Hepp's proof but rather apply the original 
Haag method (Haag, 1958) as extended in Araki & Haag (1967), which is 
physically more transparent and well suited for our purposes. 

2. Assumptions and Corresponding Results of the Haag-Ruelle Theory 

In order to keep things as simple as possible, without thereby circumventing 
principal difficulties, however, let us restrict ourselves to the theory of one 
kind of neutral scalar particle with mass m > 0, described by the self- 
interacting tempered Wightman field A(x). 

This means, for all ~0 E o~¢'(R 4) the formal integrals fdxA(x)~(x) (also 
denoted by A(~)) represent linear operators, well defined on a common 
invariant dense linear manifold D in a separable Hilbert space • .  According to 
Einstein causality these operators are to commute on D for ~o's with spacelike 
separated supports, i.e. symbolically:~ 

[A(x),A(y)] =0  for (x - y ) 2  < 0 

Furthermore, a strongly continuous unitary representation U(A, a) of the 
connected Poincar6 group is defined on ~ ,  for which we have 

U(A,a)A(x)U-I(A,a)=A(Ax +a),  U(A,a)DCD. 
There is a vacuum state vector ~2 in D, unique up to a phase factor, which is 
cyclic for the smeared fields A (~) and invariant under the representation 
U(A, a). Finally, the spectrum condition requires the spectrum of the energy- 
momentum operator P"  (its components being the generators of the represen- 

Since we shall restrict ourselves to particles of  only one kind it is not necessary to 
refer to velocity space. 

We use the notation p x  = p O x °  - px for the Lorentz scalar product.  
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tation U(1, a) of the translation group) to lie in the closed foreward lightcone 
v+. 

In addition to these so-called Wightman axioms (Wightman, 1956; Streater 
& Wightman, 1964) we have to impose two further conditions in order to make 
use of the Haag-Ruelle theory (Haag, 1958; Ruelle, 1962). First, we have to 
postulate the existence of a mass gap in the spectrum o fP  ", i.e. the spectrum 
o fP"  is to be contained in ~ - {p: p E V+,p 2 ~>m2}, except for the eigen- 
value 0 corresponding to the vacuum. Secondly, we have to postulate the exist- 
ence of almost local fields creating 1-particle states from the vacuum. Following 
Hepp, we even require the 1-particle states to be created from the vacuum by 
the smeared fields A(~0) themselves in order to allow for derivation of dispersion 
relations (Hepp, 1964). Explicitly, we assume the following structure of the 
2-point function: 

( O l A ( x ) A ( y ) l O ) = i A + ( x - y ) + i  f d p ( g ) A ~ ( x - y )  (2.1) 
M 

where M > m. 

Now, in Hepp's notation (1964) for ¢ ESa(R 4) 

~(p) = (20)-2 f dx~o(x) e ipx 

wp -= (p2 + m2)1/2 

(p0  + wp ] exp[i(pO_ wp)t] exp( - ipx)  ~0(x, t ) -  (2rr) -s,2 f ap~(p) \ ? ~  ] 

A(~, t) = f dx~(x)~*(x, t) 

the following theorem is a special result of the Haag-Ruelle theory (Haag, 1958; 
Ruelle, 1962): 

4 "~ Theorem 1. Let ~a . . . . .  ~On be elements of  S~(R ). I f  supp ~0] C {p: p2 < M  2 } 
then 

n 

s-lim H A*(~ i, t ) a  
t -+ +_~ j = l  

exists and represents an asymptotic state corresponding to n particles with 
momentum space wave functions fj (p) - ~j(wp, p). 

To be sure, within the Haag-Ruelle frame this theorem is 'only' proved for 
~0i's with Fourier transforms of the form ~j (p) = ~j (P)hi (P) with gi E 9°(R 3) 
and h i c 5~(R 4) (compare proof of Theorem 2, below). However, contrary to 
Hepp's opinion (Hepp, 1964), this is no real restriction: 

Lemma 1. Let n, n' be positive integers with n' <~ n and let ~o, ~1, ~2 . . . .  
be a (countably infinite) sequence o f  test functions in 5e(Rn). Then there is a 
positive g E ff~ (R n') and a sequence {ho, ha, h 3 , . . .  } C5¢(R n) such that 

~or(t t . . . . .  t n) = g(t I . . . .  , tn')hr(tl, . . ., t n) for r=  0, 1, 2 . . . .  

Proof. See Appendix 1, 
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3. Proof  o f  the LSZ Asymptot ic  Condition 

The crucial point in the derivation of the LSZ asymptotic condition is well 
known to be the rapid strong convergence of Haag's almost tocalised states 

n 

FI A *(::, 
j = l  

for essentially non-overlapping (~/(wp, p)} C ~g°(R 3) in the limit t--> +_oo. 
In order to prove this convergence we profitably exhibit the asymptotic 

properties of  smooth Klein-Gordon wave functions 

(3.1) 

as outlined by Haag (1958), Araki & Haag (1967). Then the following general- 
isation of  the original Ruelle lemma (Ruelle, 1962)just  states what one is to 
expect from heuristic physical considerations:t 

Lemma 2. Le t  N be a non-negative integer. Then there are constants, A,  B, 
C for  which the following statements hoM: 

1. I[(t, vt)11NIf(t -- X °, vt  -- X)t K A( I  + [[xlI N) max max I(1 + flpll c )  
[a[  < B p @ R  3 

x h ~ f ( p )  1 for  arbitrary f Eo~(R3), t E R x, x E R  4, and 

2. Itl3/2lf(t, vt)l<~A m a x  m a x  I(1 +llpllC)D~f(p)lforarbitrary 
t a t<B p ~ R  3 

f 3),  t 1 , v 3. 

( f  defined by (3.1))  

t The f-dependence of the majorisation constants (see also Lemma 3, below) will not 
be exhibited in the present paper. See the first of our concludkng remarks, however. We 
adopt the usual notation 

3tal 
a n  D t a I a ~ a n  

~p 3t2 . . .  ~t n 

for t = (t 1 . . . . .  t n) ~ R n and a ~ Z~ (Z~ being the set of n-vectors with non-negative 
integer components). 
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Proof. While statement 2 was proved by Araki (1962), the proof of state- 
ment 1 is given in Appendix 2. 

Statement 1 of thislemma shows that particles in essentially non-overlapping 
states (essentially non-overlapping momentum space wave functions ~) 
become strongly separated for large times: 

Lemma 3. Let N be a non-negative integer. Then there are constants A, B, 
C such that the inequality 

[tNfx(t, xl)f2(t,  x2)[<~A max max m~3[(1 +][p[]C)D~I~(p)[ 
/ E { 1 , 2 } I a l < B  p 

holds for arbitrary essentially non-overlapping ( f ~, f2 } C 5a(R 3), t E R a, 
(xi ,  x2) C R 3 with (Xl - x2) z < l tl. 

( f a, f2 defined according to (3.1).) 
Proof By statement 1 of Lemma 2 the inequality 

IxOtN[h(X)I<<.A max max [(1 +[]pHC)D~J~(p)[ 
[ a l < B  p E R  3 

holds for~  G•(R 3) within the region 

with suitable constants A, B, C independent of g ( /=  1, 2). Hence, the state- 
ment of Lemma 3 is an immediate consequence of the fact that (t, x/) E R  4 - 
K~ ( /=  1, 2) implies (xl - x2) 2 > I t t for essentially non-overlapping 

So we are ready to prove the required rapid strong convergence of appro- 
priate states: 

Theorem 2. Let { f l  . . . . .  J~ } C J ( R  3) be essentially non-overlapping. Then 
there are ~o 1 . . . . .  ~n E~ga(R4) with ~/(wp, p) = f~ (p) for] E ( 1 . . . . .  n} and 
positive constants Co, C1 . . . .  such that 

. 1 1 n  

m a x  m a x  C N I t [  N - ~ - . - ~ A * ( ~ i ,  t)~"~ ] ~ A  
N E Z +  t E R  ~ a t l ±  l 

/=1  

Proof. By I_emma 1 there is a positive valued function ~ E~g°(R 3) such that 
ff_~ ~ /g  ~9~(R 3) for / E (1 , . . . ,  n). Let us choose some h C ~ (R  I) with 
supp h C (0, M2), h(rn 2) = 1 and define: 

~(P) - ~(p)h (p2), ~/(p) - ff(p)~(p).  

So by use of the almost localised field 

B(x) - (2rr) -2 f dx'A(x')~o(x' - x) 

and the smooth positive frequency Klein-Gordon wave functions 

( d p  ~/(p) exp[_i(wpx o _ px)] h'(x) (2rr) -3/2 
2wp d 
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A*@i't)=ix°f= t dx(  B(x) Of/(x)ox 0 0 : ( x ° ) f f ( x ) )  

for ] = 1 . . . .  , n. Now we just have to copy one of Ruelle's proofs (see Ruetle, 
1962, p. 158): 

Expand 

d H A , ( ~ I  ' t)~Z Z 
]=1 

into its finite sum of products of truncated vacuum expectation values which 
are of the form 

I(t) = f dxo dxl . . . .  dxgf~'(Xo, t)f~'(xl, t ) . .  f~"(xk, t) 

x ~ ' ( x l  - x o  . . . . .  x k  - x k _ P  

with ~" ESg(R 3k) and smooth (positive frequency) Klein-Gordon wave 
functions f6' (resp. f6'*) . . . . .  f~' (resp. f~r,). Products containing only factors 
I(t) with k < 2 do not contribute since (2.1) implies A (~0], t)Q = (didO x 
A*(~o], t ) ~  = 0. From I.emma 2 we see that all the truncated vacuum expec- 
tation values I(t) are bounded in t. Moreover, for k t> 2 there are at least two 
of the f~'(*), •"(*) 

• • -, Jk which form an essentially non-overlapping set in 
momentum space. Therefore, by Lemmas 2 and 3, we see [tNI(t)[ to be 
bounded in t for every non-negative integer N in this case. So all the products 
vanish sufficiently rapidly for t -* +oo. 

The few remaining steps in the derivation of the LSZ asymptotic condition 
may be literally taken over from Hepp (1965) to give the final result: 

Theorem 3. Let ~o E Sa(R 4) and let {~o 1 . . . . .  ~n} C ~a(R4) correspond to 
essentially non-overlapping { f l . . . .  , fn } C 5g(R 3) ()~(p) - ~] (wp , p)). I f  
supp ~(i) C {p: p2 < M 2 } we have 

s-lim A*(~o, t) s-lira ]~ A*(~oi, t')~2= s:lim A*(~o, t) YI A*(~ i, t)g2 
t~+-oo t '-~_+~ ] = 1  t ~ + - ~  j = 1 

(the interpretation being given by Theorem 1). 
Let us conclude our considerations by three remarks: 
1. By use of the explicit ~dependence of the majorisation constants in 

Lemmas 2 and 3 Theorem 3 may be easily generalised to the strong 
t-> _+oo limit of A*(~, t) applied to asymptotic states with arbitrary 
n-particle momentum space wave functions from the complete linear 
subspace o f~ (R  3n) spanned by all functions of the form )~1 (Pl)J~(P2) 
• .. fn(Pn) with essentially non-overlapping {j}} C,ga(R3). 

2. The methods used here are well adapted to explicit generalisation to 
Jaffe fields (Jaffe, 1967) (see also Lticke, t973). 



AN IMPROVED DERIVATION OF THE LSZ ASYMPTOTIC CONDITION 97 

3. It should be clear how to apply Lemmas 1-3 to the more general and 
more elegant C*-algebra approach to scattering by Araki & Haag (1967). 

Appendix 1: Proof o f  Lemma i 

Without toss of  generality we assume ~o o to be non-trivial. Then by t  

are m a x  max max ] taOtb(ll(t I . . . . .  tn')ll4r~or,,(t)) 
t r;r"EZ+ a, b E Z  n tER  n 

r , r"<r  lat,lbl<<.r 

with r E Z+ (= Z+ I) we define a non-decreasing sequence {at} of positive 
numbers. Hence 

¢ ( t ' ) -  ~ lit'liar t ' E R  n' 
(2r)!ar" 

r = O  

is a positive entire function. Although ~ (t ') cannot be a multiplier in oq~(Rn'), 
it is quite evident that the functions h r defined by 

hr(t)-- ¢(t 1 . . . . .  t n ' ) ~ r ( t l , . . . ,  tn); t E R n ,  rEZ+ 

are all tempered (i.e. hr E ~a(Rn)). On the other hand, the function 

(?)2, 
f f l ( t l )  - t 1 E R  1 

(2r)!ar' 
r = O  

fulfils the inequalities 

[ ~ r ) ( t l )  ] ~  (1 + It1 ] )¢ l ( t l ) ;  fEZ+ 

Therefore, the identity 
r+l 

(1/~1)(r+1) = (ff(r+l) _ r +  j= l  ] ($a2)(1)(1/~l)(r 1-]))/~ rEZ+ 

shows that t/~V 1 ES(R1). Hence, fo rg  = i/t~ we get all the required properties: 

g > O, g E y(Rn'),  ¢r(t) = g(t I . . . . .  tn')hr(t) 

Appendix 2: Proof o f  Statement 1 o f  Lemma 2 

We just have to give an explicit version of  Ruelle's sketchy proof  (Ruelle, 
1962) (see also Araki (1962) for the simple case 1 ~< v =- (v2)V2). 

Let us choose some infinitely differentiabte function g over R 1 with 

g ( t )=  {12 f o r l t , <  1 

for I t l > 2 .  

See footnote on page 94 for definitions. 
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Then the 0.g (R3)-functions'~ 

k l (p )  = O(v - I )  + 0(1 - v)g(p2)g(p 3) 

k2(p) - 0(1 - v)(1 - g ( p 2 ) )  

ka(.p) -- 0(1 - v)g(p2)(1 - g(p3))  

have the following properties: 

k l (p)  + k2(p) + ka(p) = 1 

tp21, t p a t <  2 if0(1 - v ) k 1 ( p ) •  0 

I p 2 l >  1 if k2(p) ¢ 0 

[p31>  1 if ka(p) 4= 0 

Now, if we define 

(A.Zl) 

q = (mv/(1 - v2) 1/2, O, O) for v < 1 

1 m4 + 16[tptl2t-1 
a----- + 9 0 ( 1 -  v) --~[]-p S q- ~ ] for p v~ q 

we have the inequalities 

(1 /2)min  1,9(m4+1611pl le)  ~ a < m i n  (1 /3 ) l l p -q I t , (m /2  

I l p - q l l < 3 1 p l - q l l  i f tp2l ,  l p a t < 2 a  

for v < 1. Hence the rough estimate 

= O(v - 1) [piu ° - I lu l lwp~ {I + 0(1 - v ) I p ] w q  -I lql lwp5 {I 

> m4/(36(2 + m 4 + 1611p112)3(1 + 0(I - v)llp - qll-2))" > 0 

for p ~ supp k j ( p / a ) f ( R - l p )  (A.2.2) 

is easily established for every spatial rotation R with 

Ru = (llull,  0, 0) 

where 

u ° = 1/(1 + v2) 1/2, u -= v/(1 + v2) 1/2 

~" Without loss of generality we assume v 4:1 throughout the proof. As usual, the 
characteristic function of the positive real axis is denoted by 0. 
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By (A.2.1) we have 
3 

(2n)3/2fx(t' vt) = ~ l  ; ~Pwp = 

exp [ -  il(wpU 0 -- 11 ult p l ) ]  

with 

fx(t,  vt) = A t  - x °, vt - x), hx(p) - exp [i(wox ° - px)], 

l ~ II(t, v011 (A.2.3) 

By (A.2.2) we are allowed to perform the substitution 

pi _~ ~ - w p u O  _ Ilull pa 

in the integral 

f dpj kj(p/a)hx(R_lp)f(R_lp ) exp [-il~(pJ)] 2Wp 

= f d~ (wp ~l- lk]  

(of course, we have pJ = p/(~) on the right-hand side). Thus, by successive 
N-fold partial integration with respect to ~ and resubstitufion ~ --> pJ we 
obtain: 

(2f;)3/2l N Ifx(t, Vt) l 

2 ~ dp kj(p/a)hx(R-lp)f(R-lp) 
/=1 

By inspection of 

(+)rkj(p/a) and { ~ ~r{ a ~ - I  

the latter in connection with (A.2.2), we see that 

II(t, V011NI fx(t ,  V01 

<A' max fdp l wrp(D~hx(R-Ip))(1 +0(1 - v ) l l p - q l l - r ' ) o ~ f ( R - l p ) [  
ta l , lb l<  N 

holds with suitable integers A', r, r' which can be chosen independent of x, 3~ v, 
and R. Hence, byfihe mean value theorem (for differentiation), we have 
(remember that f ( R  -1 q) = 0 if v < 1): 

II(t, vt)llNI fx(t, vt)l 

<~A" max max fdpiwrp(D~hx(P))l sup3 ID~,f(p')t 
p'ER l a l < N  Ibis< N + r  ' 

Ilp--p'l[ < 1 
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According to the definition o f f x  and h x in (A.2.3), statement 1 of Lemma 2 
is just a simple consequence of this inequality. 

Appendix 3: Non-existence o f  Hepp's Partition o f  the Unity 

Let us restrict q E R 3 to the positive sector S~s of the ql _ qS.plane" Then 
the curves of constant q a /wq are characterised by dqS/dq I = q a q2 /[m s + (qS)2] 
and the curves of constant qZ/wq by dq2/dq I = [m 2 + (q1)2]/(ql q2). Therefore, 
we can choose a sequence (qr) c S~'s with the folloffing properties (r = 1, 2, 

I r - q t 3 r _ l [ <  1/2 

1 _ 1 
q3r--1/Wq3r 1' q3r/Wq3r - 

for l E (1, 2}, ] E (0, 1, 2} 

q]r_] ' (q~r_ /  f o r ] =  1,2 

2 W _ 2 W qar-1/  q 3 r _ l - q a ~ - s /  q3~-2 
(A.3.]) 

II qar - q3r-  2 It < exp ( - r )  (A.3.2) 

Furthermore, we may choose'? functions fl,  fs ESe(R3) with the properties: 

f l ( q3 r_ l )  :/= 0 f o r t =  1, 2 . . . .  (A.3.3) 

I q 2 l > t q l l  i fq  Esupp fa (A.3.4) 

f 2 ( q a r ) ¢ O ¢ f s ( q 3 r - s )  f o r r =  1,2 . . . .  (A.3.5) 

Iq21< lq l l  i fq  E suppfs (A.3.6) 

The essential features of the whole construction are illustrated by Fig. 1. 
Now, let us consider the special case 

k = 3, X(P2, P3) = f l  (P2)f2(--P2 -- Pa) 

Since by (A.3.4) and (A.3.6) we have P2 + P3 4= Ps in supp X, the condition 

rnS + Pi ~ Pj + ( mz + P~)-l/2P2 4= 0 in supp X(P2, P3) 
]=2 ]=2 

is evidently fulfilled. Let a l ,  as, a 3 be arbitrarily differentiable functions over 
R 6 with 

and 

Ot 1 "t-Ot 2 - I -~3  = 1 (A.3.7) 

mS+ p/ Z 
j 2 ]=2 

p] + (m 2 + p~)-l/Zpt =/= 0 in supp Xa l 

(A.3.8) 

Those functions can be easily constructed by standard techniques. 
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supp fl 

q2 

= const. 

~,'1" ql 
q2/Wq 

qs J ' °  q6 

q4 

ql/wq = const. , . . . i  
qa 

supp f2 

ql 

Since by  (A.3 .3)  and (A.3 .5)  we have 

x ( q a r -  1, - q a r - 1  - q a r - ] )  :/= 0 

(A.3 .8)  can ho ld  for  l = 3 only  if: 

°~3(q3r- 1, - q a r - 1  - q a r - j )  = 0 

f o r j  = 0 ,  2 a n d r =  1, 2 , . . .  

(A.3.9)  

f o r j  = 0, 2 a n d r  = 1, 2 . . . .  

(A.3 .10)  

Similarly,  by  (A.3.1)  and (A.3.9) ,  (A.3.8)  can ho ld  for l = 1, 2 only if: 

~ l ( q 3 r -  1, - - q 3 r - 1  -- qa r )  = 0~2(qar-1, - - q a r - 1  -- q 3 r - 2 )  = 0 (A.3.1 1) 

(A.3.7) ,  (A.3.10) ,  and (A.3 .11)  imply:  

a l ( q 3 r - 1 ,  - q a r - 1  - q a r - 2 )  = 1 (A.3 .12)  

Figure 1. 

for I = 1, 2, 3. Then,  in order  to disprove Hepp ' s  assumpt ion  (see In t roduc t ion) ,  
we on ly  have to  show tha t  a t q~ 0de(R6):  
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Finally, the mean value theorem (for differentiation), (A.3.2), (A.3.11), and 
(A.3.12) show that  at least one of  the functions 

-~p~ a l (P2 ,  P3), 0p2 0q (P2, P3) 

cannot be polynorrdally bounded.  Thus a l  ~ Od/(R6), indeed. 

References 

Araki, H. (1962). Zurich Lectures (unpublished). 
Araki, H. and Haag, R. (1967). Collision cross sections in terms of local observables, 

Communications in Mathematical Physics, 4, 77. 
Haag, R. (1958). Quantum field theories with composite particles and asymptotic 

conditions, Physical Review, 112, 669. 
Hepp, K. (1964). On the analytic properties of the scattering amplitude in relativistic 

quantum field theory, Helvetica Physica Acta, 37, 639. 
Hepp, K. (1965). On the connection between the LSZ and Wightman quantum field 

theory, Communications in Mathematical Physics, 1, 95. 
Hepp, K. (1966). On the connection between Wightman and LSZ field theory. In Axio- 

matic Field Theory (Eds. M. Chr6tien and S. Deser). Gordon and Breach, New York. 
Jaffe, A. M. (1967). High-energy behavior in quantum field theory. I. Strictly localizable 

fields, Physical Review, 158, 1454. 
Liicke, W. (1973). The intimate relation between the extended Jaffe class and special 

spaces of type S, InternationalJournal of  TheoreticalPhysics, Vol. 7, No. 4, p. 231. 
Ruelle, D. (1962). On the asymptotic condition in quantum field theory, Helvetica 

Physica Acta, 35,147. 
Streater, R. F. and Wightman, A. S. (1964). PCT Spin and Statistics and All That. 

W. A. Benjamin, New York. 
Wightman, A. S. (1956). Quantum field theory in terms of vacuum expectation values. 

Physical Review, 101,860. 


